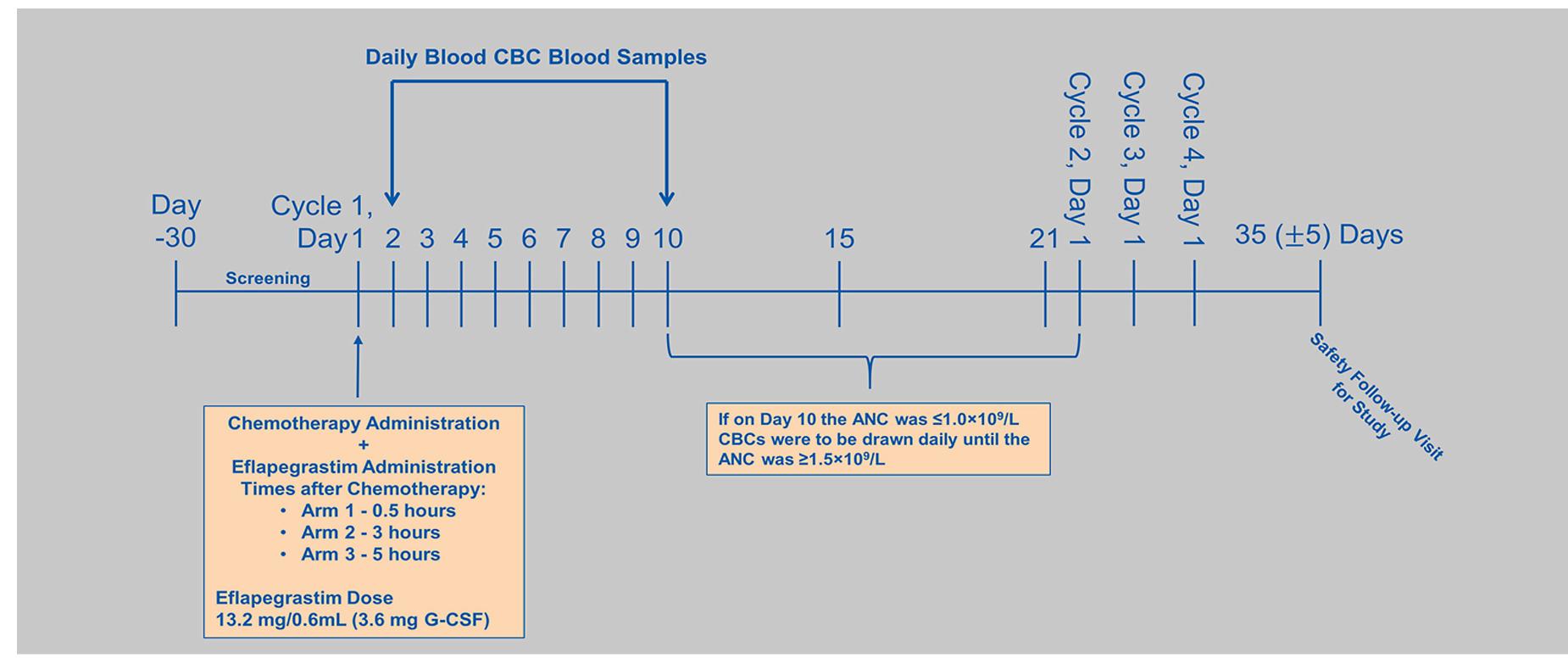


Interim safety evaluation of same-day dosing of eflapegrastim^{*} in patients with early-stage breast cancer (ESBC) receiving docetaxel and cyclophosphamide (TC)

Lee S. Schwartzberg¹, Lyndah K. Dreiling², Jawad Francis³, Nishan Tchekmedyian⁴, Hlalah Osama⁵, Manuel Modiano⁶, Kyounghwa Bae², Francois Lebel², Shanta Chawla²

¹West Cancer Center, Germantown, TN; ²Spectrum Pharmaceuticals, Inc, Irvine, CA; ³Mercy Health Youngstown, Youngstown, OH; ⁴Pacific Shores Medical Group, Huntington Beach, CA; ⁵Bond & Steele Clinic, P.A., Winter Haven, FL; ⁶ACRC/Arizona Clinical Research Center, Tucson, AZ


BACKGROUND

Eflapegrastim

- Patients receiving chemotherapy are at risk of developing neutropenia (CIN) that can lead to FN and/or infection, necessitating dose delays and dose reductions, which can affect clinical outcomes.^{1,2}
- Clinical Practice Guidelines recommend the use of G-CSF as primary prophylaxis when the anticipated risk of FN is high.
- G-CSF including long-acting agents, is administered 24 hours after chemotherapy, which requires patients to return to the clinic the next day.
- Eflapegrastim (ROLONTIS®) is a novel long-acting G-CSF, produced by covalent conjugation of a human G-CSF analog and IgG4 Fc fragment, linked via a short polyethylene glycol linker.^{3,4}
- The increased FcRn-mediated transcytosis of eflapegrastim observed in preclinical studies may enhance its bioavailability post-chemotherapy allowing dosing on the same day as chemotherapy.⁵

METHODS

Figure 1. Study Design

Key Inclusion Criteria

- Patients with histologically confirmed stage I-IIIA early-stage breast cancer (ESBC)
 - ECOG Performance Score <=2
 - Candidates for neoadjuvant or adjuvant cyclophosphamide and docetaxel (TC)
- Age ≥ 18 years

Key Exclusion Criteria

- Prior exposure or known sensitivity to G-CSF
- History of bone marrow or hematopoietic stem cell transplant
- Radiotherapy, surgery or treatment with investigational agent within 30 days prior to enrollment

Study Endpoints

- Primary Endpoint:
 - Duration of Grade 4 neutropenia (ANC <0.5×10⁹/L) in Cycle 1
- Secondary Endpoints:
- Incidence of Grade 3 febrile neutropenia (FN) in Cycle 1
- Safety

INTERIM SAFETY EVALUATION

Per protocol

Safety evaluation proceeded following completion of Cycle 1 for the first 3 patients in all treatment arms. Treatment arm(s) were to be stopped for further enrollment if one of the following criteria were met:

- 2 of 3 patients reported Grade 4 neutropenia and DSN > 1 day
- 2 of 3 patients reported febrile neutropenia in Cycle 1 and/or occurrence of any eflapegrastim-related Grade 4 AE

Additional Safety Considerations

Incidence of Grade 3/4 AEs in Cycle 1

DEMOGRAPHICS

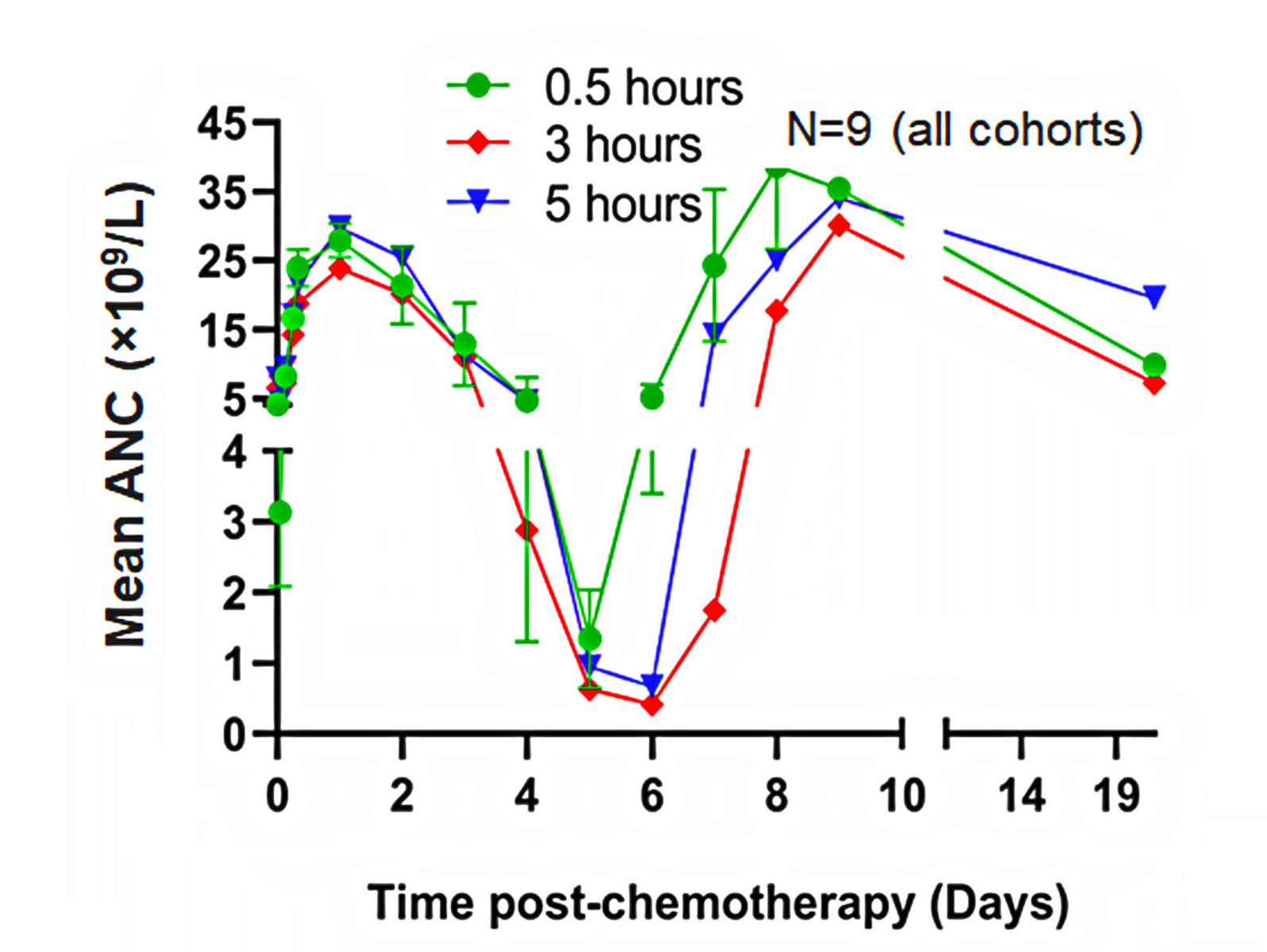
- Three patients each were randomized to Arm 1, Arm 2, or Arm 3.
- All patients were evaluable for safety

Table 1. Demographics

Characteristic	Arm 1 (0.5 hrs) (N=3)	Arm 2 (3 hrs) (N=3)	Arm 3 (5 hrs) (N=3)		
Age (years), Mean	48.7	63.7	59.3		
Weight (kg), Mean	73.5	115.5	70.5		
Gender (F/M), n/n	3/0	3/0	2/1		
ECOG Performance Status, n					
0	2	1	2		
1	1	2	1		

RESULTS

Table 2. Severe Neutropenia in Cycle 1


Duration of Severe Neutropenia (Days)	Arm 1 (0.5 hrs) (N=3)	Arm 2 (3 hrs) (N=3)	Arm 3 (5 hrs) (N=3)			
Duration of Severe Neutropenia*						
0 days, n	2	2	1			
1 days, n	1	0	1			
2 days, n	0	1	1			
Patients with Febrile Neutropenia, n						
Grade 3	0	0	1			
Grade 4	0	1	0			

* Grade 4

Note: All 9 patients received Cycle 2 chemotherapy

- Arm 1: ANC recovery is more rapid as compared to Arms 2 and 3
- Arms 2 and 3: ANC nadir is deeper and longer as compared to Arm 1

Figure 2. ANC Profiles in each Treatment Arm

OVERALL SAFETY

Table 3. Adverse Events Overview

	Arm 1 (0.5 hrs) (N=3)	Arm 2 (3 hrs) (N=3)	Arm 3 (5 hrs) (N=3)		
Patients with Treatment-Emergent AEs, n					
All Grades	3	3	3		
Grade 3	2	3	3		
Grade 4	1	2	2		
Serious AEs	0	3*	0		

^{*} Serious AEs:

patient – cholecystitis acute, nephrolithiasis, Urinary tract infection bacterial; 1 patient – sepsis; and 1 patient – ypertensive crisis

CONCLUSIONS

Arm 1

- Positive early data showing ANC rapid recovery in Arm 1
- Met the prespecified interim safety evaluation criteria and therefore supports the expansion of this arm to 15 patients
- The overall safety profile was similar to previously seen in large randomized studies when GCSF was given 24hrs after chemotherapy^{3,4}

Arms 2 and 3

- ANC nadir appears deeper and longer than in Arm 1
- Arm 2-3 did not meet the prespecified criteria, leading to stopping enrollment

Overall

- Early results are promising but a larger number of patients need to be studied before feasibility in humans is established

REFERENCES

1. Dale DC, et al. A systematic literature review of the efficacy, effectiveness, and safety of filgrastim. Support Care Cancer 2018; 26: 7-20.

2. Denduluri N, et al. Dose Delays, Dose Reductions, and Relative Dose Intensity in Patients With Cancer Who Received Adjuvant or Neoadjuvant Chemotherapy in Community Oncology Practices. J Natl Compr Canc Netw 2015; 13: 1383-93.

3. Schwartzberg LS, et al. Eflapegrastim, a Long-Acting Granulocyte-Colony Stimulating Factor for the Management of Chemotherapy-Induced Neutropenia: Results of a Phase III Trial. The Oncologist. 2020;25:1-9.

4. Cobb PW, et al. A comparison of eflapegrastim to pegfilgrastim in the management of chemotherapy-induced neutropenia in patients with early-stage breast cancer undergoing cytotoxic chemotherapy (RECOVER): A Phase 3 study. Cancer Med 2020; 9: 6234-6243.

5. Barrett JA, et al. Eflapegrastim's enhancement of efficacy compared with pegfilgrastim in neutropenic rats supports potential for same-day dosing. Exp Hematol 2020; 92: 51-61.

Please email: shanta.chawla@sppirx.com for permission to reprint and/or distribute.

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from the author of this poster.